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This is really a no-brainer …

What’s Happening and What’s the Meaning:   

  

ASML introduces AI to its product portfolio: This is really a no-brainer. That said, the 
problem that most equipment companies have is finding good applications for it, as they find all 
they have is little data to feed the NN (more on that below). Anyway, this will be a good test for 
DLNNs as to whether engineers will accept results without knowing what’s in the ‘blackbox,’ 
which is a classic barrier to this technology. I believe they will because comparing results to 
input consistency are pretty easy to test out in this case. Especially since ASML led the way into 

computational lithography, albeit with plenty of customer pull. 

Source: The Chip Insider®
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Machine learning brings revolution to many applications!

Can machine learning be the moonshot for us?
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We have been doing machine learning for a long time … 

with manual feature engineering 

Optical kernelsMask layout Aerial image

Aerial image Resist contour

Few hidden layers  = Shallow neural network

Optical model design

Resist kernelsResist model design

1

2

1: E. Abbe, H. H. Hopkins

2: F. H. Dill, C. Mack 
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Based on: Jagreet Kaur Gill, “Log Analytics With Deep Learning And Machine Learning” April 28, 2017

Feature extraction + Classification

Machine Learning

Machine Learning evolved to Deep Learning
Less human intervention in growing data volume analysis

Input

Input Deep Learning

Feature extraction Classification

Feature extraction & classification

Output

Output

95% cat

5% dog

95% cat

5% dog
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Massive metrology data & deep learning models further 

improve OPC accuracy in customer case  

• Big data improve pattern coverage & enhance model accuracy

• Deep Learning Model has more benefits with big data vs Traditional Model 

Calibration gauge number
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Model accuracy improvement 

with big data

Source: Jeff Dean, Google, “Trends and developments in deep learning”, Jan’17
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CD-SEM 
Field of View
(1um x 1um)
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High speed e-beam metrology and large field of view
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68

CD-SEM
(1um FOV)

eP5
(1um FOV)

eP5
(12um FOV)

eP5 Field of View

(12um x 12um)

CD-SEM eP5

Resolution 1 nm 1 nm

Current 8 pA 250 pA

Scan Rate 16 MHz 100 MHz

Field of view 1 um 12 um

Excellent precision across large field of view
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Gauges
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eP5-MXP metrology
Improving 2D metrology accuracy

with contour based measurement

Systematic error reduction

without shape fitting

EP gauges capture 

pattern shift
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Improving OPC model accuracy by 2X on DRAM
enabled by deep learning, fast e-beam, and metrology processing

Baseline metrology

w/o deep learning 

(CD gauges)  

eP5-MXP 

w/o deep learning

3.3x (CD+EP gauges)

Deep learning resist model 
Improve OPC model accuracy

eP5-MXP 

with deep learning

3.3x (CD+EP gauges)

-32%
• Systematic error removal

• Random noise reduction
• Improved pattern coverage

-18%
• Capture unknown 

physical effects

~18 hours ~3 hours
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Metrology collection time Metrology collection time

3x images

Center shift

0

1.3
nm

Irregular shape

Model prediction error (RMS)
validated with >150k Edge Placement (EP) Gauges

OPC Model accuracy study using high volume contour based gauges and deep learning on memory device, Young-Seok Kim et al., SPIE 2019, 10959-37
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Enabled by fast e-beam metrology and physical based models

Large volume wafer metrology data, 

further enhanced by fast e-beam

Data-driven training based on fitting 

spec and wafer measurements
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Physical driven training using 

physics based lithography models

Physical 

Resist 

Shrinkage

Data expansion 

through simulated 

contours
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surface 

stress

ASML Deep 

Learning model

with Deep Learning

without Deep Learning

Better accuracy of lithography models by deep learning
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EUV Cases:  7 nm and 5 nm logic

DUV Cases:  7 nm and 5 nm logic
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“EP SET1”  Edge Placement Gauge Set 1

Model Prediction Accuracy 
(RMS in nm)
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“Moore’s Law” of Computational Lithography
Runtime and cost of OPC increases node-by-node

Technology Node 28nm 22nm 14nm 10nm 7nm 5nm

Production start 2011 2013 2014 2016 2017 2019

Average transistor density (billion/cm2) 1.17 1.63 2.34 3.75 6.25 10.71

Number of critical layer masks 18 24 33 37 47 66

Normalized OPC runtime per layer per unit area 1 1.4 2 2.7 4 5.6
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Node-on-node OPC runtime trends

Total computational litho 

capacity worldwide on the 

order of 10 petaflops
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Deep learning inverse model speeds up full-chip OPC

by providing a good starting point

Selected clips

Design target
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Training on clips

Inference on full chip

Deep Learning Inverse Model

Inverse mask image

Inverse mask image

Complex, Iterative 

Optimization

Full chip layout

Training input Training input

Deep Learning Inverse Model

Design target

Full chip layout (Post-OPC)
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Improving training pattern coverage 

using machine-learning-based pattern selection Slide 12
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Full-chip Layout Pattern Library

Pattern 

Collector

Machine-learning-based pattern selection Training Pattern Set

This 

method

Manual 

selection
Random selections

This 

method

Manual 

selection
Random selections

Normalized RMS between prediction 

and ground-truth (inverse solution) Critical PV-band (>15% CD error ) Comparison

…

…

…

…

Feature 

Generation

Pattern 

Clustering

Representative 

Selection

Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection K. Chen et al., SPIE 2019, 10961-37
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Deep learning SRAF improves full-chip DoF by 24% 

for DRAM contact hole layer, validated on wafer Slide 13

Newron SRAF places more accurate assist 

features to remove the process window limiter 

Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection K. Chen et al., SPIE 2019, 10961-37

Newron SRAF wafer validation                                 

shows 24% DoF improvement 
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Leverage confluence of new technologies to meet OPC 

technology and cost requirements

Mask writer 

& inspection

Multi-beam Mask Writer available

Mask 

inspection 

available

Mask making 

infrastructure is ready 

for inverse OPC & 

curvi-linear masks

VoltaPascal

2016 2017 2018 2019 2020 2021

Inverse OPC 
(CTM)

Inverse OPC (CTM+)
Deep Learning Inverse

Inverse with phase control
Hardware Accel. (tentative)

Turing

Cascade Lake Cooper Lake Skylake Ice Lake 

14  10 nm

Intel DL Boost

Spring Crest 

Next Gen?
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Context-aware control extends holistic solutions

Etch

Dep
CMP

Dep

Etch

Lithography Step N-1

Lithography Step N

Lithography Step N-2

CMP

Context Data

Litho InSight and Pattern Fidelity Enhancements
Leveling, Alignment, Metrology Overlay, Focus, pattern defect control and scanner/etcher co-optimization

Metrology design & 

setup

Model, sampling & 

control setup

Monitoring & 

analytics

Corrections

Public



Public

Slide 16

Leverage machine learning to address wafer-to-wafer 

variation induced by different wafer process routes
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ASML Machine 

Learning Model

Correlate wafer-to-wafer variation 

to process context and apply run-
to-run control with context-based 

grouping

Overlay Variations

Different Process Route
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Every month > 100,000 wafers 

exposed per scanner

16

A novel patterning control strategy based on 

real-time fingerprint recognition and adaptive 

wafer level scanner optimization

H. E. Hakli et al., SPIE 2018, 10585:105851N
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Predict dense alignment from dense leveling data

hybrid metrology enabled by machine learning

Unknown (orange points)

• Overlay or alignment from 

same wafer at different 

coordinate locations

Type 1 

• Overlay or alignment 

sampling from same 

wafer (blue points)

P
re

d
ic

ti
o
n

K
n
o
w

n
 i
n
p
u
t

• Leveling & 

Alignment all wafers

Machine Learning

Pairing wafer leveling metrology from a lithographic 

apparatus with deep learning to enable cost effective dense 

wafer alignment metrology

E. Schmitt-Weaver & K. Bhattacharyya, SPIE 2019, 10961-7
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Computational 

lithography and metrology

Optical and e-beam metrology
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Holistic Lithography delivering significant customer value

Slide 18
Lithography scanner with advanced control capability 

Etch and deposition tools

Data
Scatterometry, SEM, 

& other fab

equipment

Algorithms
Physical Models,

Optimization, 

Machine Learning

Applications
Patterning Control
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Moore’s Law

Performance

Cost Data

Applications

Algorithms

Major trends in semiconductor-enabled computing 
Public
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Immersive experience

Autonomous decisions

Connectivity

Real-time

Volume

Data  Value

Deep Learning
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