BACUS – Sep. 11, 2012

Improving CD Uniformity using MB-MDP for 14nm node beyond

Byung Gook Kim, J. Choi, C.U. Jeon (Samsung Electronics) S. Watson, I. Bork, B. Pack, R Pearman (D2S)

Ø 📃 🛜 🌌

Contents

- Background
- Revisit of the basic concept
- Extension from simple to complex
- Verification of the method
- Summary

ITRS Roadmap for CD Uniformity

0.9 ~ 1.7nm CD uniformity is required in 2016

			1	1	1	1	1	
Year of Production	2009	2010	2011	2012	2013	2014	2015	2016
DRAM/ MPU/ ASIC (M1) ½ pitch (nm) (contacted)	52	45	40	36	32	28	25	23
DRAM CD control (3 sigma) (nm)	5.4	4.7	4.2	3.7	3.3	2.9	2.6	2.3
Flash ½ pitch (nm) (un-contacted poly)	38	32	28	25	23	20	18	16
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	54	45	38	32	27	24	21	19
MPU gate in resist (nm)	47	41	35	31	28	25	22	20
MPU physical gate length (nm)	29	27	24	22	20	18	17	15
Gate CD control (3 sigma) (nm) [A]	3.0	2.8	2.5	2.3	2.1	1.9	1.7	1.6
Overlay (3 sigma) (nm)	10.3	9.0	8.0	7.1	6.4	5.7	5.1	4.5
Contact in resist (nm)	66	56	47	39	33	29	26	23
Generic Mask Requirements			•					
Mask magnification [B]	4	4	4	4	4	4	4	4
Mask nominal image size (nm) [C]	186	162	141	126	112	100	89	79
Mask minimum primary feature size [D]	130	114	99	88	78	70	62	55
Mask sub-resolution feature size (nm) opaque [E]	93	81	71	63	56	50	44	40
Image placement (nm, multipoint) [F]	6.2	5.4	4.8	4.3	3.8	3.4	3.0	2.7
CD uniformity allocation to mask (assumption)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
MEEF isolated lines, binary or attenuated phase shift								
mask [G]	2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
CD uniformity (nm, 3 sigma) isolated lines (MPU gates),		2.0	4.0	47	4.5		4.2	
binary or attenuated phase shift mask [H] * MEEF dense lines, binary or attenuated phase shift mask	2.4	2.0	1.8	1.7	1.5	1.4	1.3	1.2
[G]	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
CD uniformity (nm, 3 sigma) dense lines (DRAM half	2.2	2.2	2.12	2.2	2.2	2.2	2.2	
pitch), binary or attenuated phase shift mask [J]	3.9	3.4	3.0	2.7	2.4	2.1	1.9	1.7
MEEF contacts [G]	4	4	4	4	4	4	4	4
CD uniformity (nm, 3 sigma), contact/vias [K] *	2.1	1.9	1.7	1.5	1.3	1.2	1.0	0.9
								~ - *
Linearity (nm) [L]	8.3	7.2	6.4	5.7	5.1	4.5	4.0	3.6
CD mean to target (nm) [M]	4.1	3.6	3.2	2.9	2.5	2.3	2.0	1.8
Defect size (nm) [N] *	41	36	32	29	25	23	20	18
Blank flatness (nm, peak-valley) [O]	190	165	147	131	117	104	93	83

CD Uniformity improvement by dose increase

To achieve ~ 1nm CD variation, increase of dose is inevitable to compensate shot noise effect

- D_{th} : Threshold
- W: metrology window
- r_b : beam blur inc. fwd scattering & e-beam column
- r_d : blurring by resist process
- η : backscattering ratio

Barriers to dose increase

Current VSB e-beam throughput cannot support such a high dose

- Extremely high number of shot is expected in 14nm beyond
- Heating effect must be solved for high dose assignment
- Outgassing of resist can affect the EB hardware
- How can we do that now?
 - Increasing dose means reducing shot noise of the pattern edge

Using MB-MDP

- Model-Based Mask Data Prep(MB-MDP) which uses overlapping shots enables more manufacturing-robust mask writing compared to Conventional MDP.
- Robust in:
 - Dose-variation (due to steeper and customizable dose margin)
 - Shot size variation (greater split effect immunity)
 - Shot placement variation (greater split effect immunity)

MB-MDP is physics- and simulation-based modeling for every shape The more complex or smaller the shapes, the more this matters

ILT pattern

- In conventional fracturing, dose margin has not been considered in each pattern shape
 - Conventional MDP assumes that all shots deliver same dose margin
 - MB-MDP can improve regions w/ poor dose margin by optimizing shapes and doses while using over-lapping shots

Conventional

MB-MDP

ELECTRONICS

Conventional vs. MB-MDP - Image

- MB-MDP shots enable significantly steeper dose gradient.
- Visually different in terms of image contrast

MB-MDP

Conventional vs. MB-MDP - Dose slope

- Patterns composed by MD-MDP method show a significantly better dose margin
- Green represents better dose slope (> 2% / nm) than red (< 1%/nm)

MB-MDP

Conventional

Verification for CDU improvement by MB-MDP

Inspection, SEM & AIMS measurements are planned to verify MB-MDP contribution for CD uniformity

Test design – Random Logic (A)

Two settings used for MB-MDP

- 1. CD-MB-MDP: CDU Optimized
- 2. SN-MB-MDP: Shot Number Optimized

Pattern A – Random Logic

Pattern Markers

SN-MB-MDP

CD-MB-MDP

Pattern Conversion Results – Priority Choice

- Number of shot depends on which priority is important
 - Shot Number Priority or CDU Priority
- Pattern Conversion are prepared in different ways depending on the purpose of the layer

Design	Condition	Shot #		
Pattern A	CD-Priority	22,544,000		
	Shot # -Priority	14,240,000		
	Conventional	30,288,000		
Pattern B	CD-Priority	5,124,000		
	Shot # -Priority	1,820,000		
	Conventional	2,716,000		

Verification by Monte Carlo simulation

- For Conventional & MB-MDP Shot Configurations, 300 Monte Carlo runs. Shots are dithered in;
 - Dose: 2% sigma
 - Shot size: 1nm sigma
 - Shot placement: 1nm sigma
- D2S TrueMask[™] DS is a very effective tool for Monte Carlo analysis due to its speed and flexibility – easily customizable.
- Lithography simulation of dithered shots is also available in the Monte Carlo analysis to explore the impact of mask variations on lithographic fidelity.

Stability improvement against dithered condition

- MB-MDP method shows better CDU stability based on MC simulation
 - Measure PV (Process Variation) Band
 - Green: MB-MDP PV band of worst observed shape
 - Red: Conventional-MDP PV band of worst observed shape
- Note that MB-MDP is clearly superior over the variation space explored as observed with narrower PV band

300 Monte-Carlo runs
2% Dose Variation,
1 nm size variation,
1 nm position variation
(1 sigma)

Simulation Results

MB-MDP method shows improved CDU of area and line-width compared to conventional MDP. Impact at wafer level increased by MEEF.

Marker (Pattern B)	Conventional MDP CDU (1 σ)		MB-MDP	CDU (1 σ)	Reduction	
	Mask	Wafer	Mask	Wafer	Mask	Wafer
Area 1 (nm ²)	538	969	420	625	22%	36%
Area 2 (nm ²)	554	1175	418	557	25%	53%
Area 3 (nm ²)	531	1178	415	568	22%	52%
Area 4 (nm ²)	493	742	380	495	23%	33%
Line 1 (nm)	0.96	N.A.	0.62	N.A.	35%	N.A.
Line 2 (nm)	0.78	N.A.	0.55	N.A.	29%	N.A.
Line 3 (nm)	1.73	N.A.	1.47	N.A.	15%	N.A.
Line 4 (nm)	1.26	N.A.	0.89	N.A.	29%	N.A.

All results are in Mask Units

SAMSUNG

ELECTRONICS

Conv mbmdp

67000

68000

Inspection Results

Both Shot Number-Priority and CDU-Priority MB-MDP methods show clear effectiveness in reducing defects caused by size variation (i.e. CDU)

SEM Image

Conventional

SN-MB-MDP

Full SoC Chip Conversion Operational

- Logic contact layer replicated and flattened to 40mm x 40mm (4X) area
 - Hierarchy and pattern matching disabled

D2S TrueMask[™] MDP

Shot Synthesis	18.5 hours*
Mean Error	<0.03 nm
2D Sigma Error**	<1.0 nm
Shot Reduction***	52%
Shot Count	80 Billion Shots

* Processing Time extrapolated from a 100 TFLOPS platform to the standard CDP (400 TFLOPS)

** Per-Pixel Edge Error (EPE) of all contour edges

*** Shot count of ideal ILT with MB-MDP compared to shot count of Manhattanized ILT with conventional fracturing

Summary

- To achieve CD variation below 1nm, an increase of dose is needed to compensate for eBeam shot noise effect.
- In conventional fracturing, dose margin has not been considered.
- Selective dose assignment with over-lapping shots could be a solution. MB-MDP can synthesize the pattern with priority to improve CDU and shot count.
- Both Simulation and Inspection results show that MB-MDP methods can improve dose margin and CDU. Improved CDU is possible with reduced dose and writing time compared to conventional MDP

