

Mask Process Modeling in the Multi-beam Era

Managing Company Sponsor

D2S Patented Technology

eBeam Initiative, SPIE 2017

Questions About the New Mask-Writing Era

- What's different about the multi-beam era?
- What's the same?
- What do we need to consider when modeling a multi-beam system?
- Mask process modeling in the multi-beam era

D_{2S} What's different about multi-beam?

D2S Patented Technology

Multi-beam Uses Many Beamlets in Parallel

Source: IMS Nanofabrication

Huge Opportunity to Make Masks Great

- Any shape can be written in the same write time
- Dose profiles can be optimized

Multi-beam era moves us into the curvilinear domain!

What will remain the same?

D2S Patented Technology

Mask Process Physics is the Same...

...Just More Complex

What do we need to consider when modeling a multi-beam system?

D2S Patented Technology

Printed Mask Data Contains Both Shape and Dose Effects

We need to separate dose from shape effects!

Today: Dose Models Used for Shape Correction ^{D2S}

are degenerate with the variable etch bias

.....

Printed Mask Data Contains Both Shape and Dose

Only dose effects

Test structures needed to separate dose from shape effects!

Today's Simple Models are not Sufficient

Non-zero y-axis values mean: mask print errors from model

Best fit "3G + constant threshold" model: Still 14nm of error!

- Fit overcompensates for the dose profile effects (3x dose)
- Fails to fully compensate for the small CD effect
- Demonstrates broken shape and dose degeneracies in the multi-beam era

Standard 3G Models Do Not Predict Resist Data

Non-zero y-axis values mean: mask print errors from model

Best fit "3G + constant threshold" model

- Better, but still does not meet requirements
- Overall dose trends better
- Remember: there is more physics than simple scattering terms...

Dose-Specific Physics are Required

Non-zero y-axis values mean: mask print errors from model

It is possible to make more physical models that meet desired tolerances Just need to add the correct physics.

Multi-beam Era is More Complicated

VSB	Multi-beam
Dose profiles are "simple"	Dose profiles will be complex
Typically only "1" or "2" doses to worry about	Many dose values to predict
Can use dose terms <n>G to assist bias terms.</n>	Dose terms no longer degenerate to Etch terms; more complex dose models are needed
Etch done on rectilinear shapes	Etch needs to be done on curvilinear shapes

Bias models based on 1D data are under-constrained Shape effects depend on:

- Open area "shadowing"
- Local pattern density "loading"
- Local radius of curvature

A good etch model needs to encompass a wide variety of 2D features

TrueModel[®] Mask Modeling for the Multi-beam Era

Multi-beam Era Requires Dose + Shape Models

- The underlying physics is the same for VSB and multi-beam systems
 - We *do* need to start paying attention to the dose profiles
 - We *do* need to augment the simple shape effect model.
 - Challenge: isolate and model both dose and shape effects
- We do need to ensure a dose-aware model
- We will need to model this on curvilinear systems
- TrueModel has a test chip ideally suited for the new regime

TrueModel Understands Dose/Shape Separation ^{D₂S/}

Printed Mask Data Contains Both Shape and Dose

Only dose effects

Test structures needed to separate dose from shape effects!

TrueModel Predicts Shape Effects and Dose Effects Simultaneously

D₂S

TrueModel results based on dose profile to resist data. 90nm of MTT can be brought to +/-2nm

TrueModel Predicts Both Shape and Dose Effects

TrueModel results based on dose profile to resist data. 90nm of MTT can be brought to +/-2nm

Model fit summary, including calibration data (circles) and prediction data (squares)

Modeling results correctly separate shape effects from dose effects...independent of tool

